If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+12r-264=0
a = 1; b = 12; c = -264;
Δ = b2-4ac
Δ = 122-4·1·(-264)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-20\sqrt{3}}{2*1}=\frac{-12-20\sqrt{3}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+20\sqrt{3}}{2*1}=\frac{-12+20\sqrt{3}}{2} $
| 102/3d+1=16-d | | x+(x+30)+2x=30 | | A(2)=9+(n-1)(6) | | 2x-15=22 | | -210=-57x+7 | | -12=2-7w | | x+.08875x=9 | | -8-5p+5+3=-317 | | -6k+9=-75 | | 15y=18=6y | | -84=-7n+4-7 | | 6-5c=-10c-29 | | 7−2d=11 | | 33=x/5+17 | | 187=7+10x | | 5x1=5 | | 7x+23x-4=6(5x+2) | | -94=2-42b+8 | | 7+10b=203 | | -90=-9z | | -15x^2-19x+15=0 | | 1(-4-9v=) | | 13q+4+2=19 | | x/2-14=18 | | 10x+51=x | | b-2=3b-8 | | 70-(-2q)=80 | | -95=5m-3+5m | | 3y-13=9 | | 7x+4=-3·(4+5x) | | –(3+x)=8–3(1–x) | | 4+7p=25 |